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Abstract-The stress concentration of a cylindrical bar with a semi-eUipticai circumferential
notch under bending is'analyzed on the basis of the basic theory established in the first paper.
The stress concentration factors are systematically calculated for various combination of notch
dimensions. It is found that the stress concentration factors by so-called Neuber's trigonometric
rule has non-conservative error of about 7% for wide range of notch depth. The stress con
centration factors are illustrated in the charts so as to be used easily in designs or researches.
The effect of notch shape on the stress distribution at a minimum section is also discussed from
the viewpoint of the notch effect in fatigue strength of notched cylindrical bars. The error of
the stress concentration factors obtained in the present analysis is less than 1% for the worst
cases (very deep notch) and less than 0.1% for most cases.

I. INTRODUCTION

The stress concentration problem of a cylindrical bar with a circumferential notch (Fig.
1) is mainly used in practice for the design of shafts. It is also important with respect
to the rotating bending fatigue test which has been used to investigate fatigue strength
of metals. Since there have been no exact solutions of this problem, so-caI1ed Neuber's
trigonometric rule[1] has been used for a long time in order to estimate stress concen
tration approximately. The stress concentration charts by Peterson[2] and Nisida[3],
which were made on the basis of Neuber's value, have been also used. Although these
charts have been used frequently in designs or researches, there have been few dis
cussions about their accuracy. By the recent results of a strain gauge measurement[4]
and analyses of finite element method[5, 6], it was suggested that Neuber's rule might
have a non-conservative error. In the case of the tension problem, it was found that
the maximum error was about 10%[7]. Accurate stress concentration factors and ac
curate stress distributions are required for the quantitative estimation of fatigue notch
effect (or size effect) and for studying in detail the fatigue mechanism which is expected
to be solved with the recent development of the experimental technique. Moreover,
the author's review of the previous papers on fatigue notch effect has revealed that
there are several data in which the fatigue limit of notched specimen O'wl is smaller
than the value obtained by dividing the fatigue limit of plain specimen 0'wO by the stress
concentration factor (SCF) K r• Such data (0'... 1 < O'wOIKr) are unreasonable except for
special conditions. Then the reliability of such experimental data have to be checked
by the estimation based on an exact stress concentration factor Kr • Usually, O'wl is
fairly larger than O'II.ofKr• However hard steels have a tendency that 0'... 1 is nearly equal
to O'II.ofKr• Therefore the unreasonable fatigue data on hard steels should be reviewed.
In this paper, from these viewpoints, the calculated stress concentration factors will
be compared with the values obtained by Neuber's trigonometric rule, and the effects
of notch form on the stress distribution near the notch root will be also discussed. Not
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Fig. 1. A cylindrical bar with a semi-elliptical circumferential notch under bending.

only the maximum stress (factor I) but the stress distribution (factor 2) near the notch
,root is significant for fatigue notch effect. The viewpoint that considers the importance
of these two factors in notch effect is consistent with that of stress intensity factor in
crack problems.

In the first paper[9], the basic theory of body force method was developed for the
stress concentration analysis of an axi-symmetrical body under bending and it was
applied to a couple of simple problems. Consequently, it was concluded that three
types of rina forces in r, 6 and z directions with the intensity of cos <l> or sin <l> were
necessary and sufficient as the fundamental solutions to solve bending problems of an
axi-symmetric body in similar manner as tension or torsion problems. In the present
paper, the basic theory established in the first paper[9] is applied to the stress analysis
of a cylindrical bar with a semi-elliptical circumferential notch under bending. Since a
bending problem of a cylindrical bar with a circumferential notch is more difficult than
tension or torsion problems, a few papers have been reported. On the analysis of semi
circular notch, Kikukawa and Sato obtained the stress concentration factors by using
the strain gauge method[4] and the finite element method (FEM){5]. Mayr, Drexler and
Kuhn[10] analyzed the problem by the boundary element method (BEM). The recent
development of FEM has enabled us to solve approximately almost all elasticity prob
lems. However, FEM is unsuitable for systematic calculation of SCF K, under various
geometrical conditions. In the present paper, SCF K, of semi-elliptical notch are sys
tematically calculated and exact tables and charts of K, for designs or researches are
shown.

2. METHOD OF ANALYSIS

In the first paper[9], the basic theory of the body force method applied to the
problems of an axi-symmetrical body under bending, and the solutions of several simple
problems were shown. The problems treated in the present paper are solved in a similar
manner in principle as in the first paper by using three types of ring forces as funda
mental solutions. Namely, the solution of a cylindrical bar having a boundary condition
in Fig. 1 can be obtained by distributing three types of fundamental solutions (in Figs.
2-4) along the boundaries which is imagined in an infinite body and is expected to
become a traction-free cylindrical surface and circumferential notch. The intensities
of distributed ring forces are determined from the boundary conditions. It was shown
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Fig. 2. A ring force with intensity cos et> in r-direction.
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Fig. 3". A ring force with intensity sin et> in 8·direction.
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Fig. 4. A ring force with intensity cos et> in z-direction.

in the basic theory of the first paper[9] that only one longitudinal section for satisfying
boundary conditions had to be considered and consequently the problem could be
treated in a similar manner as a two-dimensional case. However, additional improve
ments are necessary in the distribution of body forces or the divisions of boundaries
in order to obtain exact solutions in the problems of the present report, because traction
free boundary conditions must be satisfied along both the cylindrical sutface and the
circumferential notch.

2.1. Boundary conditions
The boundary conditions of the problem in Fig. 1 are as follows:

(a) r == D/2, b :$ I z I :$ :x:; U r == Tr~ == Tre == 0,

(b) along the surface of a semi-elliptical circumferential notch (n: normal direc- (1)
tion, t: tangential direction, 9: circumferential direction); Un == Tnt == Tn! ==
0,

(C) 0:$ r :$ D/2, I z I == :x:; U~ == Uo (2r/d) COS e (Other stresses vanish.)

where. Uo is a constant which means the intensity of the applied bending stress. The
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bending moment is loaded such that CJ': has the maximum value at e = 0, the minimum
value at e = 1T and zero at e = 1T/2 and e = 31T/2. CJ'1l is the normal stress in normal
direction, Tne is the shear stress in meridian direction and TIlIl is the shear stress in
circumferential direction at the boundary of the semi-elliptical circumferential notch.
These are expressed in eqn (2) in conjunction with CJ'r, CJ':, TI':' TI'Il and Til:.

CJ'n = CJ'r cos2 1\11 + CJ': sin:! 1\11 + 2Tr : sin 1/11 cos 1/1 1

Tnt = (-CJ'r + CJ':) sin 1\11 cos 1/11 + Tr : (cos:! 1/11 - sin:! I/Id

Tne = Tre I cos 1\11 I + Toz sin 1/11

(2)

where 1\11 is the angle made by the r-axis and the normal direction of the semi-ellipse
of the notch shape.

2.2. Definition of the density of the body force
The densities Pro Pe and pz of the body force distributed in r, e and z direction are

defined in eqn (3), (4):

along the circumferential notch;

dFr • dFe d dF:
PI' cos 1\1 = t d~ dl\l' Po sm 1\1 = t ds dl\l ' pz cos 1\1 = 2t t dt dl\l (3)

along the cylindrical surface;

dFr . dFo dF:
PI' cos 1\1 = t d~ dl\l ' Pe sm 1\1 = t d~ dl\l ' pz cos 1\1 = t d~ dl/l (4)

where dFr , dFe and dFz denote the r-, e- and z-component of the point forces distributed
along the infinitesimal curved area t dcj> ds (ds = Y(d02 + (d~)2), and (t, cj>, ~) is a
cylindrical coordinate of a point where point forces act. The definition of pz in eqn (3)
is defined considering the bending stress field CJ'z = CJ'o (2r/d) cos <1;1.

2,3. Method for dividing boundaries and distributing body forces
In Fig. 5, a cylindrical surface and a troidal surface having an elliptical cross section

which represents notch form are shown. We define the boundaries (the dotted line in
Fig, 5) by those infinitesimally near the boundaries where the boundary conditions are
to be satisfied. Body forces are distributed along these boundaries. It is difficult to
determine in closed forms the body force densities which satisfy the boundary con
ditions completely. Therefore, the boundaries are divided and the problem is solved
numerically. The values of densities of body forces, which are assumed to be constant
in each division, are determined from the boundary condition at the midpoint of each
division. The boundary length in z-direction O'C and O'C ' (the dimension of the spec
imen) in Fig. 5 is determined from the condition that the calculated results virtually do
not change by increasing its length. The minimum value of the length O'C and O'C'
was about two times of outer diameter D. The divisions of cylindrical surface are set
to be fine near the notch and coarse in proportion to the distance from the notch, that
is, the boundary BC is divided into the sections, the length of which vary in a geometric
series from B with the first term b and the common ratio 2 or 3. Each section is divided
into a set of finer divisions. The boundary conditions of the cylindrical surface are
satisfied at the midpoint of these finer divisions. On the other hand, the boundary of
the semi-elliptical notch is divided concerning 1\1 which is a variable in the parametric
equations of ellipse:

r = a cos 1\1 + D/2, z = b sin 1/1. (5)
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Dividing the elliptic arc AB in Fig. 5 into n\ divisions, we number them from A to B.
The pair divisions in arc AB', A'B and A'B' are numbered the same number. The
interval of j-th divisions (\IIh-\IIJ2) are given by eqn (6).

(6)

If we call the division where the boundary conditions are to satisfy the ;-th division,
the coordinate of the midpoint of i-th division is given by eqn (7).

l\Ji = 1'1' - 21'1' (i - 0.5)
n\

(7)

In the troidal surface in Fig. 5, the densities of body forces distributed along the
j-th divisions in AB, AB', A'B and A'B' are determined by satisfying the boundary
conditions at the each midpoint of ;-th division in AB. Body forces are applied along
the arc A'B and A'B' in addition to the arc AB and AB' which should be a semi
elliptical notch, because it makes the shear stress Trz at Band B' small and consequently
the boundary conditions can be satisfied easily. The positive directions of the body
forces are illustrated with arrows in Fig. 5. Considering the analysis of troidal hole
under bending reported in the first paper, these directions are suitable to obtain accurate
results. In the case of a very deep notch, it was found that body forces distributed at
BA' and B'A' had a bad effect on the numerical results, because of the great difference
between the curved areas of AB, AB' and BA', B'A'. In order to cope with such cases,
the form of BA'B' of the deep notch in the Fig. 5 was changed to the semi-circle with
the radius b.
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The division along the cylindrical surface BC are numbered from B as j = n I +
I-nt + n2. The division along B'C' has the same number as BC from symmetry. Near
the point B, the body force densities tend to become unbounded values because of the
abrupt change of boundaries. Such a trend has a bad effect on the numerical results.
In order to avoid such a effect, the linear distribution of body forces along the boundary
O'B (and O'B') is added to the (nt + l)-th division as shown in Fig. 6. Although only
a body force in r-direction is shown in Fig. 6, the body forces in 6- and z-directions
are also applied in the same way. In this way, we have finite body force densities at
(nl + l)-th division.

2.4. Calculation of influence coefficients
In this paper, the stresses induced atthe midpoint of the i-th division by the dis

tributed body force with unit density at the j-th division are called the influence coef
ficient. These stresses can be calculated by integrating the stresses crf" --r{( due to
ring forces shown in Fig. 2-Fig. 4 (crf'·_.r{( is given in eqns (5)-(8) in the first report).
Taking ~r:J, ~fI and ~f as examples, we can write them as eqn (8), where the relation
dt = (bla)t' dlls (t' = t - D12) and dt = (alb)t dl\t are used.

(8)

where (l\tJl-IIsj2) is the interval ofj-th division in the circumferential notch and (~il-Zj2)

is that in the cylindrical surface. The integrations in eqn (8) are performed numerically
using Simpson's rule. The boundary stresses due to body forces at the circumferential
notch are expressed in the forms of 0'~1, 1'~1i, . .. p~lli by substituting the stresses
~f, ~1, 1ft{ ... , . into eqn (2).

2.5. Determination of body force densities
The body force densities are determined by solving the following 3(nl + n2) linear

equation$.

z

A A' r
Ol------.:~--""'""-__+....;............

6'

Fig. 6. Distributing method of body forces on O'B.
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nl+m 2r.
~ (Prp~1 + PaJ'O'~i + P;:jO"~Y) + 0'0 cf sin2

1\11 = 0 (j = I-nd
.i-I

nl+n2

~ (Pr/r~1i + Pl!fT~ + p<:/'l'~1D
.i-I

2r; . .1. 0+ 0'0 d SID 1\1, COS ,!"I =
nl+n2

~ (PrJ'l'~~i + ~~i + P<:/'l'~gi) = 0
.i-I

(i = J-nd

(j = I-nd (9)

n1+n2

~ (Prp~r + Pap~?i + p~r) = 0 (j = nl + I-nl + n2)
.i-I

nl+n2

~ (PrJ'l'~Z + PllJ'l'~ + P<:/'l'~$) = 0 (j = nl + I-nl + n2)
j-I

nl+n2

~ (PrJ'l'~i + Paj'rf#} + p<:/-r'''&) = 0
j-I

where ri is the r-coordinate at the midpoint of the i-th division. Once the body force
densities are determined, the stresses at an arbitrary point can easily be calculated by
using the body force densities and the stresses at the point due to unit body force
density which can be determined from eqn (8) in the same manner as the influence
coefficients.

2.6. Fundamental equations
The fundamental equations of stress field due to ring forces shown in Fig. 2-Fig.

4, which are necessary for calculating ~1, <r.:r.... in eqn (9), are given by eqns (5)
(8) in the first paper[9]. These are not written in the present paper to avoid overlap.

3. NUMERICAL RESULTS AND DISCUSSION

A computer program for the analysis of a cylindrical bar with a semi-elliptical
circumferential notch was coded on the basis of the procedures for the numerical anal
ysis described in Section 2. The integral in eqn (8) was numerically performed by
Sympson's rule with 10 dividing numbers. When the body forces are distributed along
the division under consideration of boundary condition (Le. i = JJ, or when the max
imum stresses at the end of major axis must be calculated, the numbers of divisions
for numerical integral was increased by lo-times as that of other case. Stress concen
tration factors (SCF) K r were determined from the maximum stress O'max and the nom
inal stress 0'n calculated from the bending moment M which were obtained by integrating
the stresses O'ir) at the minimum section OA in Fig. 5. Therefore, it follows:

M = 4 Ld/2 L'If/2 O'z(r)r2 cos2 e de dr

= 1l' Ld/2 O'z(r)r2 dr (10)

K -~t - ,
O'n

32M
O'n = 1l' d3 • (11)

In the subsequent sections, SCF obtained in this way are tabulated and illustrated with
the attention to the effects of two parameters; the notch depth to and the notch root
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radius p. to and p are expressed with the major and minor axis of a semi-ellipse (a and
b) as to = a and p = b2la. Poisson's ratio is assumed to be 0.3.

3.1. Variation of stress concentration factors with increasing dividing numbers nI

and n2
Table 1 shows examples of stress concentration factors calculated for various di

viding numbers n\ (notch) and n2 (cylindrical surface). The symbol ::X:6_ 8 means the
extrapolated value using the results for nI = 6 and 8. Although the numbers of divisions
nl and n2 were naturally restricted by the computer capacity, the accuracy of the
numerical results discussed below were checked in the same manner as Table 1. The
authors assure the error in the present analysis is less than 1% for the worst cases,
and less than 0.1% for most cases.

3.2. SCF of semi-circular circumferential notch
In Table 2, SCFs of semi-circular notch are compared with the results by other

researches. Neuber's trigonometric rule has about 5% error in case of a shallow notch.
The experimental value of Kikukawa and Sato[4], which were obtained by strain gauge
measurement, are in good agreement with the present results. SCFs in Table 2 are
plotted in Fig. 7. As 2plD -+ 0, SCF of semi-circular notch approaches the value K,
::: 3.065[11] which is SCF of a semi-circular notch in a semi-infinite plate under tension.
And as 2p/D -+ 1, SCF approaches the value K, ::: 1. In Fig. 7, the numerical results
by Mayr, Drexler and Kuhn[10] are also plotted. Their results tend to have large error
for the large value of 2p/D.

Table 1. Variation of stress concentration factors with increasing dividing
numbers nl and n2(v = 0.3, to = a, p = b2la)

2p1D = 0.03 2p1D = 0.2

2to/D nl n2 Kt n, n2 Kt

6 36 3.793850 6 30 1.787203
8 42 3.794725 8 40 1.786952

0.3 12 i2 3.795277 12 60 1.786737
006-8 3.797 006-8 1.786
008-12 3.796 ""'8-12 1.786

8 40 2.659077 8 32 1.380065
12 60 2.662158 12 48 1.382803

0.7 16 80 2.663327 16 64 1.384048
""'&-12 2.668 008_12 1.388
00

12
_

16 2.667 ""'12-16 1.388

Table 2. Stress concentration factors of a cylindrical bar
with a semi-circular circumferential notch under bending

(v = 0.3)

Present
2p1D analysis [4] [5] Neuber

0.02 2.877 2.82
0.03 2.790 2.73
0.05 2.630 2.56
0.1 2.306 2.21
119 2.245 2.26 2.27 2.15
4/29 2.112 2.13 2.01
0.2 1.858 1.86 1.87 1.77
0.3 1.575 1.53
1/3 1.504 1.50 1.53 1.47
0.4 1.390 1.37
0.5 1.269 1.27 1.29 1.26
0.6 1.183 1.18
2/3 1.139 1.14 1.14
0.8 1.072 1.07
0.9 1.032 1.03
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Two-dimensional
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... Mayr et al.
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1.0
0.0 0.2 0.4 2p/D 0.6 0.8 1.0

Fig. 7. Stress concentration factor of a cylindrical bar with a semi-circular circumferential notch
under bending (v = 0.3).

3.3. SCF of semi-elliptical circumferential notch
In Table 3, SCFs of semi-elliptical notch and corresponding values by Neuber's

trigonometric rule are shown. The present results in Table 3 were obtained by the
extrapolation from the results of n. = 8-16 and n2 = 40-80. By systematic calculation
shown in Table 3 and Fig. 8, it may be concluded that Neuber's trigonometric rule has
about 7% of non-conservative error for the wide range of notch depth. The charts of
SCF are also shown in different way in Figs, 9 and 10, where the abscissa is 2p/D.
Using these charts (Fig. 8-10), SCF K, not calculated in the present paper will be
estimated.

3.4. Stress distribution near notch root
Figs. 11-13 show the stress distributions near the root of notch at a minimum

section. The ordinates represents the dimensionless stress rTz/rTmax , where rTmax denotes
the maximum stress at the root of notch. The abscissa represents the dimensionless
distance x/p from the notch root. We find from these figures that the dimensionless
stress distributions near the root of a notch are approximately independent of the var
iation of notch depth, if the notch root radius is kept constant.

Concerning the study of notch effect or size effect in rotating bending fatigue test,
NisitanHl2] proposed a method to determine the fatigue limit of the notched specimen
of an arbitrary size from the experimentally verified facts; (I) the root radius of a notch
at the branch point Po is a material constant and independent of the notch depth, and
(2) the maximum stress amplitude (K,cr ... J) at the notch root at the fatigue limit based
on crack initiation is a unique function of the stress gradient at the notch root. And
then. he pointed out that the notch root radius p was a most important controlling
factor in the notch effect (or size effect). because the stress distribution near the notch
root was almost completely determined by the notch root radius. In his paper[12J, this
was discussed using Neuber's solutions. As seen in Figs. 11-13, his finding has been
confirmed more accurately and concretely by the present analysis.
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Table 3. Stress concentration factors of a cylindrical bar with a semi-ellipticaJ circumferential notcb under bending (v == 0.3, to == a, p '= hZ/a)
0-<

2p1D == 0.02 2p1D == 0.03 2pfD == 0.05 2p1D == 0.1 2p/D == 0.2 2p1D == 0.5 2p1D = 1.0 ~
c

Present Present Present Present Present Present Present ">
2/0/D analysis Neuber analysis Neuber analysis Neuber analysis Neuber analysis Neuber analysis Neuber analysis Neuber

:>c:
>
!:

0.02 2.877 2.82 2.511 2.48 2.147 2.13 1.785 1.78 1.532 1.53 1.31\ 1.31 1.202 1.19 z
0.05 3.708 3.56 3.169 3.06 2.630' 2.56 2.099 2.05 1.728 1.69 1.407 1.37 1.250 1.22 z
0.1 4.324 4.06 3.648 3,45 2.974 2.83 2.306 2.21 1.845 1.77 1.450 lAO 1.262 1.22 0
0.2 4.667 4.33 3.893 3.64 3.124 2.95 2.375 2.25 1.858 1.77 1.427 1.38 1.232 1.21 0

>
0.3 4.57 4.28 3.796 3.58 3.035 2.88 2.293 2.19 1.786 1.72 1.375 1.35 \.198 1.\9 ~

:;)

004 4.31 4.10 3.579 3042 2.868 2.75 2.164 2.09 1.695 1.65 1.320 1.31 \.167 \.16 0-

0.5 3.98 3.83 3.308 3.20 2.656 2.58 2.017 1.97 1.596 1.57 1.269 1.26 \.139 \.14 ::c
0.6 3.59 3.50 3.007 2.93 2.424 2.37 1.860 1.83 1.494 1048 1.218 1.21 1.1\2 1.1\ z
0.7 3.18 3.10 2.667 2.61 2.168 2.12 1.692 1.67 1.388 1.38 1.166 1.16 1.085 f.(J9 iii
0.8 2.68 2.62 2.27 2.22 1.87 1.84 10499 1.48 1.272 1.26 1.113 1.1\ 1.058 1.06

::j
>

0.9 2.04 1.99 1.77 1.73 151 1.48 1.27 1.26 \.14 \.14 1.058 1.06 1.028 1.03 3
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Fig. 8. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential
notch under bending (v = 0.3, to = a, p = bZla).
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Fig. 9. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential
notch under bending.
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4.0

2.01lm
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Fig. 10. Stress concentration factor of a cylindrical bar with a semi-elliptical circumferential
notch under bending.
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Fig. II. Stress distribution near the root of notch (in case of a sharp notch).
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Fig. 12. Stress distribution near the root of notch.
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3.5. Review of the experimental data about notch effect in the rotating bending
fatigue test

As already described in Section 1, in the previous studies about the fatigue notch
effect, there are several data in which the fatigue limit of a notched specimen awl is
smaller than the value of the fatigue limit of a plane specimen awO divided by SCF K"
i.e. awl < a..,o/K,. Not only the maximum stress but also the stress gradient is a im
portant factor controlling the crack initiation at the root of the notch. From this view
point, these data showing awl < a..,o/K, are unreasonable, because the stress gradient

1.0

0.5 '-.)
2to/D-0.05

~--,.

,0.1

'" 0.3

... 0.7

0.0 &nO"'7.0~_...I-_L.---'---;;-L;:-_L.....--L_..L-_~~

x/p

Fig. 13. Stress distribution near the root of notch (in case of a blunt notch).
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Table 4. Review of the experimental data about notch effect in the rotating fatigue test (cr"". cr,,·,,: kg(
mm~)

SCF used
in the SCF

experiment obtained by
2p/D 2to/D K; authors K, CJ'wO cr"ijIK; cr"ijlKt cr\\'l material

Nishioka et 0.04 1/3 3.1 3.282 43 13.9 13.1 13 9~ nickel steel
al.[l3] " " " 56 18.1 17.1 17

45 14.5 13.7 14
60 19.4 18.3 18

Shimizu et 1/15 1/3 2.20 2.651 50 22.7 18.9 20 induction
al.[14] hardened

0.15~ carbon
steel

of the notched specimen is steeper than that of the plane specimen with the same
minimum cross section. In the following, several experimental values are reviewed
using an accurate SCF K, obtained in the present paper.

Table 4 shows several examples of experimental data showing <T",1 < <T",oIK,. The
experiment by Nishioka, Hirakawa and Toyama[13] was carried out on the 9% nickel
steel at room- or low-temperature. If we use Neuber's value K; = 3.1 in order to
estimate the stress concentrations of the notched specimens, these experimental data
seem to be unreasonable. However, if we use SCF K, = 3.282 obtained by the present
analysis, they can be understood reasonable. We must consider that the fatigue limits
were determined by lkgflmm2 step in this experiment. The experiment of Shimizu,
Nakamura and Kunio[l4] was carried out on the induction-hardened 0.15% carbon
steel. In this case too, if we use K, = 2.651 obtained by the present analysis, <T",t
becomes larger than <T....oIK,. Other experimental data of previous researches are also
reviewed and it was found that there were some cases where the correct Neuber's
value was not necessarily used because of reading error in the charts. Therefore, it
should be noticed that the exact discussion is not likely to be done by using Neuber's
SCF.

4. CONCLUSION

Since there were no exact solutions for the problem of a cylindrical bar with a
circumferential notch under bending, the approximate stress concentration factors
(SCF) by Neuber's trigonometric rule have been used for a long time for designs or
researches. It has been accepted generally that the error of Neuber's SCF is not so
large. There has been few discussions -'ut the accuracy of Neuber's SCF. In the
present study, the problem was solved~erically on the basis of the basic theory
established in the first paper. Although solutions were obtained numerically, they have
a high accuracy and may be considered to the exact solutions for the practical use.
The conclusions are summarized as follows:

(1) SCF of a cylindrical bar with a semi-elliptical circumferential notch under bend
ing were systematically calculated for various combination of notch dimensions.
It was found that Neuber's trigonometric rule has non-conservative error for
wide range of notch depth. The error of the present analysis is less than 1% for
the worst cases and less than 0.1% for most cases.

(2) The stress concentration factors were illustrated in the charts so as to be used
easily in designs or researches.

(3) The effect of notch form on the stress distribution near notch root was inves
tigated. The stress distribution near notch root is controlled mainly by the root
radius of a notch and is independent of other dimensions. This is the key point
to understand notch effect or size effect[12].

(4) As 2p1D -+ 0, SCF of the semi-circular notch approaches the value K, =
3.065[11], which is SCF of a semi-circular notch in a semi-infinite plate under
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tension. As 2p/D -+ 1, SCF approaches the value K, = 1. The experimentally
determined values by Kikukawa and Sato[4] are in good agreement with the
present results.

(5) In the previous studies about the fatigue notch effect, there are some data in
dicating 0'wi < 0'weiK;. Apparently, they are unreasonable values. However, if
they are reconsidered by accurate SCF K, obtained in the present paper, some
of them become O'wl > O'...ofK, and are regarded reasonable.
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